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SUMMARY 

A simple convection algorithm for simulation of time-dependent supersonic and hypersonic flows of a 
perfect but viscous gas is described. The algorithm is based on conservation and convection of mass, 
momentum and energy in a grid of rectangular cells. Examples are given for starting flow in a shock tube and 
oblique shocks generated by a wedge at Mach numbers up to 30.4. Good comparisons are achieved with 
well-known perfect gas flows. 
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INTRODUCTION 

The prediction of supersonic and hypersonic flows continues to be a significant problem in fluid 
mechanics despite a great deal of work over many years. Some recent contributions have been 
made by, for example, Boris and Book,’ Lohner et a1.,2 Chakravarthy and O ~ h e r , ~  Yee et aL4 and 
Schmidt and Jameson.’ 

The existing computation methods for the supersonic flow problem are typically based on 
continuum mechanics. In this approach the problem of predicting the flow is regarded as a 
problem of solving partial differential equations subject to certain boundary conditions. These 
equations are then approximated by a numerical scheme which is based on Taylor series 
expansion of the governing differential equations. 

These schemes assumes that the variables of the problem - velocity, pressure, temperature or 
some constructs of these - are continuous functions of space and time. The weakness of schemes 
based on the continuity assumption is naturally most clearly seen at shocks. Shocks are on the 
one hand the most characteristic feature of supersonic flow and on the other hand clear violations 
of the assumption of continuity. 

The most superficial acquaintance with Fourier analysis indicates the way in which a set of 
continuous functions will represent a discontinuity: by a series of wiggles around the discon- 
tinuity which decrease in amplitude with distance from the shock. The typical shock prediction 
demonstrates this behaviour perfectly. The more advanced algorithms include correction to 
suppress this behaviour. 

The traditional alternative method for the prediction of supersonic flows is the method of 
characteristics. On the basis of the hyperbolic nature of the governing equations, this method 
converts the partial differential equation problem into the solution of ordinary differential 
equations along characteristic lines. The disadvantage of this method is the complexity of the 
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process of evaluating the location of solution points from the intersection of the characteristic 
lines. A variant of the method of characteristics employs a fixed grid and assumes that the 
characteristics are piecewise straight. As a consequence the shocks are inaccurately located. 

The error made by the classical type of algorithm is the assumption of continuity in 
discontinuous functions. The scheme advanced in this paper makes the opposite error: the 
solution functions are assumed to be discontinuous but the discontinuities are located in the 
wrong places. 

The method does not attempt to solve the partial differential equations but rather examines the 
behaviour of the fundamental quantities: material, momentum and energy. As mentioned above, 
the governing equations of supersonic flow are hyperbolic in nature. Information propagates 
within a cone defined by the characteristics. In consequence the flow is controlled by the 
conditions upstream. It might appear that the downstream conditions have no effect on the Aow, 
but this is not the case. A powerful early demonstration of this point was given by Roache.'j 

TYPICAL SUPERSONIC FLOW PROBLEMS 

The flow problems described in this paper are typical of those in the literature. We can divide 
these into two classes: those with a defined flow rate and those in which the flow rate is 
determined in the calculation. We will describe the implementation of the boundary conditions 
for both classes and will deal first with those problems with a defined flow rate. A sample 
geometry, which exhibits most of the types of boundary condition in a fairly general form, is given 
in Figure 1 for flow over a wedge of half-angle 18.4". 

The fluid enters the computational domain at the upstream surface A with given properties: 
velocity, density, pressure, temperature and so on. This type of boundary condition presents no 
computational difficulties whatsoever: the values are simply specified. 

A feature which often appears is a symmetry surface or slip plane (B in Figure 1). There is no 
flow across this surface, no shear stress and no diffusion of energy or material. These conditions 
occur at a plane of symmetry, on the centreline of an axisymmetric flow and at a solid surface at 
which it is not required to enforce a no-slip condition. These conditions are achieved in this 
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Figure 1. Example problem geometry for supersonic flow over wedge with half-angle 18.4". The upstream flow conditions 
are fully specified and the downstream boundary condition is as described in the text 
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method by setting the values of all variables in the dummy layer immediately outside the 
computation domain to equal those inside, ensuring no diffusion across the boundary. The only 
restriction on the values in the surface layer is that the normal velocity is required to be not into 
the boundary. The values in any cell are of course only a representative average of the point 
values, so non-zero velocities into the computational domain do not violate the condition of zero 
flow through the boundary. Since the velocity in the surface layer is required to be zero or into the 
domain, there can be no flow outwards across the boundary. The normal velocity in the dummy 
layer is set to zero and hence there is no flow inwards across the boundary. 

It is not possible to set the normal velocity in the surface layer to zero, since it would then be 
impossible for material to leave the cells in the surface layer. A zero tangential velocity is required 
at some point in the surface layer where an object is placed in the flow. For the class of problems 
we are discussing in this section the upstream conditions include a defined velocity and so the 
quantity of material in the surface layer cells would grow continuously with time. 

FREE DOWNSTREAM BOUNDARY CONDITIONS 

The free downstream boundary condition, D in Figure 1, is by far the most difficult to implement 
successfully. In contrast to the predetermined downstream condition, such as a set value of 
pressure in the free stream, no information is known about the conditions at a free downstream 
boundary, except that no influence from the boundary can be allowed to propagate into the flow 
upstream. 

Although difficult, the free downstream boundary condition is a very important orie both for 
practical computation and for verification of the algorithm. The simple analytical results in 
compressible flow are obtained for perfect gases, and if a number of shocks occur in the flow, the 
influence of the steadily growing boundary layer will make the expected real results differ greatly 
from the perfect gas theory; but it is not possible to calculate exactly the real flow, except by the 
use of the kind of algorithm we are testing. A simple flow, such as the oblique shock wave 
produced by a wedge, will not differ greatly from the corresponding perfect gas flow, and the 
difference can be reasonably estimated. It is therefore desirable for verification to be able to 
simulate the flow past a wedge in an infinite gas. For a computer of finite size this requires a free 
boundary. Many, perhaps most, experimental results are concerned with external flows and these 
similarly require free downstream boundaries if the size of the computation domain is to be at all 
reasonable. 

A similar type of condition is sometimes applied in incompressible flow if a stress-free 
downstream boundary is imposed, but this does not lead to the difficulties encountered in 
compressible flow. These difficulties were first reported by Roache.6 Complete specification of the 
upstream values should determine flow everywhere, provided that the flow remains supersonic. 
The algorithm described here resembles almost all others in possessing a small amount of 
‘numerical viscosity’: diffusion of various quantities in all directions, including upsteam. In 
consequence it is necessary to supply the correct values on the downstream boundary so as not to 
impose a false resistance to the flow: the author has found it possible to impose either a resistance 
or apply an acceleration to the flow if incorrect values are applied at the downstream boundary. 

The downstream condition which has proved successful with the algorithm described attempts 
to estimate the flow conditions outside the boundary from those just inside the boundary. Two 
alternative conditions were tried. The first was to calculate the values outside the boundary from 
those directly upstream. In the second the values are projected along the characteristic direcions. 
The first condition produced a false acceleration in the flow in the region where the shock 
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intersects the boundary. The second condition produced a resistance to flow in the same region 
and created a weak reflected shock. 

The condition adopted is to project the contours of the flow variables across the boundary. The 
direction of the contours at the boundary is determined for each cell by calculating the direction 
which gives the minimum average deviation from the contour value. The value outside the 
boundary is taken as the mean value along that direction for a small distance into the region. The 
distance is typically 10 cells. It will be seen from the results shown below that this condition gives 
quite straight projection of the contours over the boundary. 

CONSERVATION ALGORITHM 

The algorithm used to calculate the flow values is based on conservation of mass, momentum and 
energy as the simulation proceeds over discrete time steps. The flow domain is divided into 
rectangular cells. Each cell contains at any given time a certain block of material which possesses 
a certain momentum and energy. In the course of the next time step this block, with its associated 
mass, momentum and energy, is convected a small distance. It may also gain or lose mass, 
momentum or energy by diffusion and the action of pressure gradients. The algorithm evaluates 
the changes in these quantities for the material block and proportionally redistributes the mass, 
momentum and energy to the cells over which the block is located at the end of the time step. 

The mechanism of the algorithm is illustrated in Figure 2 for convection with positive u- and 
u-velocities. The letters A, B, C and D represent the proportion of the material block located in a 
particular cell at the end of a time step. These proportions of mass, momentum and energy in the 
material block are allocated to their respective cells. When the process has been performed for all 
cells, the new distribution of mass, momentum and energy is available. From this distribution 
updated values of density, velocity, pressure and temperature can be derived. Upwinding is used 
in the evaluation of the momentum and energy changes produced by the pressure gradients in 
order to prevent instabilities. 

The flow quantities are transported by three processes modelled by the algorithm. Least 
significant in magnitude is diffusive transport of mass, momentum and energy. Secondly, there is 
the mechanical transport of momentum and energy due to pressure differences between the cells. 
Greatest in magnitude at the velocities modelled is convective transport of mass, momentum and 
energy due to the velocity of the fluid relative to the mesh of cells. 

Figure 2. Convection of material block with velocity u, u during one time step dt. See text for description of convection 
algorithm 
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Calculation of the flow quantities at the next time step is done in the following sequence. The 
mass, momentum and energy in a cell are modified by the action of diffusion: 

dQf, j =  6tukCdy (Qf- 1, j - 2 Q f ,  j + Qf+ 1, j )  +dx(Q!, j -  1 -2Q: j + Qf, j +  1113 (1) 

where Qf, is the quantity of mass, momentum or energy in the ( i ,  j)th cell and uk is the 
corresponding diffusion coefficient. The cell sides have dimensions dx and dy and the time step is 
6t. In addition, momentum and energy are modified by diffusion of those quantities along velocity 
gradients and energy is modified by diffusion along temperature gradients, which are calculated 
in the same way. 

In the second phase of transport calculation the momentum and energy in the cell are modified 
by the action of the pressure gradients. The pressure difference between adjacent cells moves 
momentum between the cells in accord with the relations 

d ( p ~ i ,  j ) = d t  dy(Pi- 1, j - 2 P i .  j + P i +  1, j ) ,  

6(pui ,  j ) = d t  dx(Pi. j -  1 -2Pi, j + P i ,  j +  

where ~ ( P u , , ~ )  and 6 ( p q j )  are the changes in x- and y-momentum at the (i,j)th cell. In the 
implementation of the algorithm it has been necessary to use local upwinding in the evaluation of 
the momentum transport due to pressure gradients. The upwinding velocity at a cell is taken as 
the average velocity over a group of 24 surrounding cells. The x-momentum transported into the 
(i, j)th cell is calculated as 

~ ( P u ) =  6t d ~ t C ( 1 +  F ) P i -  1, j + 2 F p i ,  j - ( 1  -F)P i+  1, jl, (2) 
where F is the upwinding factor, such that F = 1 gives complete upwinding with a positive u- 
velocity. The y-momentum transport is calculated in the same way. The value chosen for the 
upwinding factor in applications of this algorithm is F = & 0 9  depending on the sign of the local 
average u-velocity. This value has been selected after a very limited amount of experiment. 
Development work is required to determine the best value for the upwinding factor. 

At the same time as the pressure gradients are transporting momentum between adjacent cells, 
they are also doing work, if the local velocity is non-zero, and hence transporting energy between 
the cells. This energy transport is obtained from the momentum transport calculated at (2) by 
multiplying by the local velocity. 

The third phase of mass, momentum and energy transport algorithm is the convection of the 
cells. This is illustrated in Figure 2 for convection with positive u- and u-velocities. A cell is 
regarded as moving with unchanged dimensions relative to the mesh of cell boundaries, so that it 
overlaps adjacent cells. The letter A indicates the area of the cell which remains in the original cell 
at the end of the time step, while B, C and D represent the areas of a cell which are located in 
adjacent cells. The quantities of mass, momentum and energy in the cell are divided in proportion 
to the areas A,  B, C and D. Those proportions represented by B, C and D are subtracted from the 
quantities in the original cell and added to the appropriate adjacent cells. 

When the adjustment of mass, momentum and energy has been completed for all cells, the flow 
variables p ,  u, u, p and t can be calculated for all cells. 

The algorithm requires approximately 0.05 s of CPU time on a PRIME 9955 minicomputer to 
update one cell for one time step. 

STABILITY LIMITS 

It is more economical to use the largest possible time step in the computations, but there are a 
number of limits imposed by accuracy and stability considerations. The first is that, since 
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convection is only calculated into the adjacent cells, the distance travelled in a time step must not 
exceed the cell dimension. The second limit is that due to overprediction of diffusion, as described 
by Roache,6 which restricts the time step to 

At < p A x 2 / 2 k ,  (3) 
where Ax is the step size, p is the density and k is the diffusion coefficient for any quantity. 

TRANSIENT NORMAL SHOCK 

The algorithm has been tested with a number of flows involving unsteady normal shocks at a 
range of Mach numbers. The flow conditions were deliberately selected to give a mismatch 
between upstream and downstream values, and the typical flow geometry is shown in Figure 3. 
Since the density ratio across the shock system exceeds the limiting value, equal to 6 for air, the 
compression takes place in two stages. There is no limit on the density rise across the contact 
surface, since no gas flow occurs. The intermediate pressure p 2 ,  referring to the regions 1-4 shown 
in Figure 3, is given by7 

The other intermediate values follow from the pressure by the standard perfect gas equations.* It 
can be seen from Figure 3 that although the flow is one-dimensional, the algorithm is applied to a 
two-dimensional domain with a symmetry plane on the lower surface and a free downstream 
boundary on the upper surface. These conditions were selected to provide a thorough test for the 
algorithm. 

The results obtained for a range of Mach numbers are shown in Figures 4-9. In each figure the 
perfect gas solution at the simulated time is superimposed on the calculated result. The grid used 
in the computations was 498 cells long by28 cells wide and the cells were squares of side 0.5. The 
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Figure 3. Example flow geometry for supersonic flow with mismatched upstream and initial conditions. The upstream 

and initial flow conditions are fully specified and the downstream boundary conditions are as described in the text 
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It should be noted that the viscosity is constant in all the examples given in this paper: no 
attempt is made to account for variation with temperature. It is intended to introduce these and 
other real gas effects in later work. 

The non-dimensional time tnd shown is given by 
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Figure 6. Mismatched normal shocks moving into quiescent gas with inlet Mach number 5.07 at non-dimensional time 
7099 (see text). Pressure and density ratios are 10. The resultant incident shock Mach number is 5.192. The thin vertical 
lines indicate the position of the invisicid normal shocks and contact surface and the thin horizontal lines the value of the 

invisicid solution between the shocks at the same time 

where tmode, is the time in model units and a, is the inlet speed of sound. The wide variation in 
Reynolds number scales and non-dimensional times is due to the range of viscosities employed, 
which varies from 0.04 to 015. 

The leading shock is sharply defined in all cases, while the contact surface and trailing shock 
are smeared out to some extent. It was not at first clear whether the smearing was caused by the 
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Figure 7. Mismatched normal shocks moving into quiescent gas with inlet Mach number 15.2 at non-dimensional time 
1988 (see text). Pressure and density ratios are 10. The resultant incident shock Mach number is 16.66. The thin vertical 
lines indicate the position of the invisicid normal shocks and contact surface and the thin horizontal lines the value of the 

invisicid solution between the shocks at the same time 

algorithm or by the starting process: at time zero the shocks and contact surface are co-located at 
Re=O. The result shown in Figure 7 is for a flow which was started with the sharply defined 
perfect gas solution fully represented in the flow: it can be seen that smearing is very similar to 
that in a flow which has been through the complex starting flow. The smearing is a product of the 
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Figure 8. Mismatched normal shocks moving into quiescent gas with inlet Mach number 30.4 at non-dimensional time 
1970 (see text). Pressure and density ratios are 10. The resultant incident shock Mach number is 32.95. The thin vertical 
lines indicate the position of the invisicid normal shocks and contact surface and the thin horizontal lines the value of the 

invisicid solution between the shocks at the same time 

algorithm, though it is still not clear whether the effect is caused by the simulated viscosity or by 
numerical diffusion. 

The results shown demonstrate that, apart from the smearing of the contact surface and trailing 
shock, the algorithm accurately models the perfect gas theory at Mach numbers up to at least 27. 
The algorithm has not been tested at higher Mach numbers. 
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EXAMPLE PROBLEM 

The problem shown in Figure 1 has been used as an example to test the effectiveness of the 
algorithm. The particular values used were 

u0 = 3.0, (7) 

po=po=to=l-O, (8) 
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and the gas was taken as a quasi-perfect gas with 

y = 1.4. (9) 
The viscosity was set at the lowest value which would give stable solutions. 

The steady state upstream Mach number M, of the flow is thus 2.54. The deflection angle 0 in 
inviscid flow would be 18.4”. The angle of the oblique shock, p, and the downstream pressure p ,  , 
density p , ,  temperature 6, and Mach number M, are obtained from the expressions 

M i  sin 28- 2 cot 8 
Mi(y  + cos 28) + 2’  

tan 8= 

1 + [(y - 1)/2]M; sin’ 8 
yMg sin’ - (y - 1)/2 . M:sin2(p-0)= 

Predictions obtained with the algorithm for Mach number 2.54 are shown in Figures 10-24. 
Results are given at three times, while the flow is developing and when a steady state has been 
reached. Contours of Mach number, density, pressure, temperature and speed are shown. 
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Figure 10. Mach number contours in transient flow over a wedge of half-angle 18.4” with incident Mach number 254. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 887 (see text). Pressure and density 

ratios are 10 
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Figure 11. Density contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 887 (see text). Pressure and density 

ratios are 10 
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Figure 12. Pressure contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 887 (see text). Pressure and density 

ratios are 10 
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Figure 13. Temperature contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 254. 
Mismatched normal shocks are moving into quiescent gas at  non-dimensional time 887 (see text). Pressure and density 

ratios are 10 
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Figure 14. Speed contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 887 (see text). Pressure and density 

ratios are 10 
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Figure 15. Mach number contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 1775 (see text). Pressure and density 

ratios are 10 
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Figure 16. Density contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 1775 (see text). Pressure and density 

ratios are 10 
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Figure 17. Pressure contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 1775 (see text). Pressure and density 

ratios are 10 
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Figure 18. Temperature contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 1775 (see text). Pressure and density 

ratios are 10 
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Figure 19. Speed contours in transient flow over a wedge of half-angle 18.4" with incident Mach number 2.54. 
Mismatched normal shocks are moving into quiescent gas at non-dimensional time 1775 (see text). Pressure and density 

ratios are 10 
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Figure 20. Mach number contours in steady state flow over a wedge of half-angle 18.4" with incident mach number 254. 
The non-dimensional time is 14198 (see text) 
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Figure 21. Density contours in steady state flow over a wedge of half-angle 18.4" with incident mdch number 2.54. The 
non-dimensional time is 14198 (see text) 
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Figure 22. Pressure contours in steady state flow over a wedge of half-angle 18.4" with incident mach number 254. The 
non-dimensional time is 14198 (see text) 
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Figure 23. Temperature contours in steady state flow over a wedge of half-angle 18.4" with incident mach number 254. 
The non-dimensional time is 14198 (see text) 
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Figure 24. Speed contours in steady state flow over a wedge of half-angle 18.4" with incident mach number 234. The non- 
dimensional time is 14198 (see text) 
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The results are very similar to the inviscid predictions, except for the presence of the boundary 
layer. There is a small curved detached shock at the apex of the wedge and the oblique shock is at 
a slightly smaller angle. In Figures 10-19 the Mach stem at the base of the incident shock is 
clearly visible. 

The presence of the boundary layer results in a deflection angle slightly larger than that due to 
the wedge alone, and hence the flow variables after the shock do not have the inviscid values. A 
test of the accuracy of the algorithm is to examine the change in flow variables normal to the 
oblique shock and compare these with the corresponding inviscid solution. This has been done in 
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Figure 25. The shock angle was measured as 43”. It can be seen that the computation is very close 
to the inviscid values for this deflection angle near the shock. 

COMPUTATIONAL RESOURCES 

The algorithm requires approximately 380 CPU seconds to update the example problem for one 
time step on a PRIME 9955 minicomputer. Approximately 5000 time steps are required for the 
starting shock system shown to travel across the problem domain. The large amount of 
computational time required means that the problem is run in background on a PRIME 9955 
computer that is normally used for other purposes, and each solution requires about 4 weeks of 
calender time. 

CONCLUSIONS 

The algorithm described gives satisfactory simulations of viscous perfect gas flows at Mach 
numbers ranging from low supersonic to hypersonic values. The algorithm has the potential to be 
developed to incorporate real gas effects created by dissociation and recombination of molecules 
in high enthalpy flows, and further work will proceed in this direction. 
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